旷视深度学习框架 MegEngine 3 月底开源

历经近6年的打磨,MegEngine 的框架一直紧跟旷视的应用场景调整升级,尤其针对国内需求,相比 TensorFlow、PyTorch 适用性更加突出。

整体上,Brain++ 可针对视觉任务定制化优化,更好满足大量图像及视频训练,完成图像分类、物体检测、物体场景分割、影像分析等复杂的视觉任务。

值得一提的是,作为 Brain++ 最为核心的引擎框架,MegEngine 配备了 AutoML 技术,将深度神经网络设计、参数调整及设备适配等过程自动化,提高开发效率,同时可智能调度平台硬件基础设施的计算能力,支持数百名研究人员同时在数万个 GPU 芯片上执行从数百到数千个训练任务。

旷视从 2014 年开始,内部成立了“Engine”小组自研深度学习框架,经过5年多的打磨和实践,MegEngine 已经逐渐成为支撑其算法研究开发的底层平台,并在旷视实现全员使用。近几年,旷视的计算机视觉技术在智慧城市、智慧物流、智慧零售中的落地逐渐加快,其算力及深度学习框架也在海量数据的补给中更加茁壮。

据了解,MegEngine 基于C++开发,可帮助用户借助编程语言进行高性能的运算执行。同时旷视在框架内部,使用了目前流行的计算图方式,但是和其他框架不同,MegEngine 使用的是异构架构,方便使用框架进行分布式计算。

此外,MegEngine 内部的计算以算子的形式进行,它支持多种算子节点和变量算子,包括常用的卷积、全连接、ReLU 和用户可定制的算子,甚至可以计算二阶梯度,从而进行更多底层和灵活的运算。

可以说,MegEngine 在尽全力提升深度学习计算性能的基础上,为用户提供了灵活易用的模型构建工具,极大地提升了开发效率。相比于很多深度学习开源框架,MegEngine 的特点也非常明显:

首先在运算速度上,旷视 MegEngine 具备高性能计算核心,动态静态结合的内存优化机制运算速度更快,且占用更少的内存资源;其次在易用性上,MegEngine 封装了平台细节,且接口兼容 PyTorch,新人用户可快速上手;最后,MegEngine 还支持多种硬件平台和异构计算,整个框架既可用于训练又同时支持推理,实现模型一次训练,多设备部署,能够免除了不必要的转换流程导致的性能下降和精度损失。

除以上性能,MegEngine 据称也为 IoT 和视觉任务进行了特别的优化,广泛支持各种芯片。通过领先的量化计算支持,其可以通过统一量化模型来支持多种设备,同时支持低于8bit 的网络推理。

深度学习框架对于人工智能发展的推动作用自是不言而喻,但框架安装、部署、上手使用一直是难点,要针对不同硬件、模型、内存做调试。而 MegEngine 做了相应的自动化和封装,使得门槛大大降低,初级开发者也能掌握。正如深度学习框架降低了 AI 的门槛,MegEngine 又进一步降低了框架本身的部署、使用门槛。

节选自AI科技评论,原作者张梦华

1赞

请问license是否可以更换为不受国别管制的licence?
如果有国别管制的话可能会在未来遇到麻烦

您好,可以请问一下在什么样的应用场景下可能会遇到问题吗,我们会做进一步的分析和评估,谢谢~